Posted on November 7, 2017 @ 04:36:00 AM by Paul Meagher
I'm currently auditing an online edX course called Sustainable Food Security: Crop Production. It was developed by faculty at Wageningen University under their online
brand WageningenX.
I am taking the course because of my interest in food production and the promise of a more scientific approach to doing so.
The Netherlands is arguably the world leader in agricultural production: they produce the highest amount of
agricultural products per acre anywhere in the world. I figured if I want to learn about a scientific approach to crop production it might be good to learn what a university in the Netherlands has to say.
One interesting factiod about agricultural production is that from 1950 to 2012 global agricultural production has more than
tripled while only taking up 10% more land area. Can we continue to intensity production in a sustainable way to meet the demands of an increasing population which is projected to be 9 billion by 2050 (currently estimated at 7.6 billion)? That is the main issue that the course tries to address.
The contribution of land area to crop production is not expected to increase significantly during that time so most of the
increases will be due to other factors like technology, knowledge, and innovation.
The faculty at Wageningen have developed a framework called Theoretical Production Ecology that they hope will contribute to the required productivity increases in a sustainable way. I'm not an expert on this approach but I do know that it involves
simulating crop production based on the main parameters that drive the production of that crop. It is a quantitative approach involving the use of animated charts so you can interact with the parameters, see the effects, save the results and compare that with crop model results using different parameters.
The two takeaways for me so far are:
1) There is a Moore's law type of innovation happening in agriculture (not at the same explosive rate but still impressive).
Instead of packing ever more computer performance onto smaller chips, we are packing ever more growing power into smaller spaces. That
might be an underappreciated fact about what is happening in agriculture today. Whether the current approach is sustainable is another issue but
we should at least acknowledge that agricultural productivity has been increasing and take note of what is on the horizon that might lead to
greater productivity and that is also sustainable.
2) The mindset behind theoretical production ecology might be used to think quantitatively about factors of production in other contexts. Entrepreneurs may not be growing tomatoes, but they are growing businesses and perhaps there will come a day when we have models that allow us to vary the main growth parameters of a business and envision how that set of parameters generates different types of yield (number of units produced, profit, expenses, carbon credits, etc..). We can then compare that to
another set of selected parameter values and visualize the different types of yield that configuration produces. Based on these comparisons we would select the optimal set of parameter values for our production plan. This would be a more theoretical approach to business planning. The business models might be specific to the type of business we are engaged just as crop models are often specific to the type of crop being grown.
|